A genetic risk factor for mouse neural tube defects: defining the embryonic basis.

نویسندگان

  • A Fleming
  • A J Copp
چکیده

Genetic polymorphisms are thought to play an important role in determining susceptibility to neural tube defects (NTDs), for example between different ethnic groups, but the embryonic manifestation of these polymorphic genetic influences is unclear. We have used a mouse model to test experimentally whether polymorphic variations in the pattern of cranial neural tube closure can influence susceptibility to NTDs. The site at which cranial neural tube closure begins (so-called closure 2) is polymorphic between inbred mice. Strains with a caudal location of closure 2 (e.g. DBA/2) are relatively resistant to NTDs, whereas strains with a rostrally positioned closure 2 (e.g. NZW) exhibit increased susceptibility to NTDs. We tested experimentally whether altering the position of closure 2 can affect susceptibility to cranial NTDs, by back- crossing the splotch ( Sp (2H) ) mutant gene onto the DBA/2 background. As a control, Sp (2H) was transferred onto the NZW background, which resembles splotch mice in its closure pattern. Approximately 80% of Sp (2H) homozygotes develop NTDs, both cranial (exencephaly) and spinal (spina bifida). After transfer to the DBA/2 background, the frequency of cranial NTDs was reduced significantly in Sp (2H) homozygotes, confirming a protective effect of caudal closure 2. In contrast, Sp (2H) homozygotes on the NZW background had a persistently high frequency of cranial NTDs. The frequency of spina bifida was not altered in either backcross, emphasizing the specificity of this genetic effect for cranial neurulation. These findings demonstrate that variation in the pattern of cranial neural tube closure is a genetically determined factor influencing susceptibility to cranial NTDs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neural Tube Defects: A Review on Maternal Genetic Determinants

Neural Tube Defects, resulting from the failure in the closure of the neural tube, have been found to be one of the major causes of mortality and morbidity in the infants and have a variable worldwide incidence rate. Various debatable theories suggest different models for the process of the formation of the neural tube or neurulation, resulting in different types of NTDs. NTDs are an outcome of...

متن کامل

Effect of arsenic on neural tube in mouse embryo and relation to reduced folate carrier (RFC-1)

Arsenic is an important environmental toxicant which is usually found in drinking water in inorganic form. The hypothesis tested in this investigation is; arsenic exposure causes neural tube defects (NTDs) andthese defects of the central nervous system are more likely related to folate deficiency during fetal life. In this study, sodium arsenate was administered via intraperitoneal route at a r...

متن کامل

Novel Mode of Defective Neural Tube Closure in the Non-Obese Diabetic (NOD) Mouse Strain.

Failure to close the neural tube results in birth defects, with severity ranging from spina bifida to lethal anencephaly. Few genetic risk factors for neural tube defects are known in humans, highlighting the critical role of environmental risk factors, such as maternal diabetes. Yet, it is not well understood how altered maternal metabolism interferes with embryonic development, and with neuru...

متن کامل

The effect of Fibroblast Growth Factor-2(FGF-2) and retinoic acid on differentiation of mouse embryonic stem cells into neural cells

Introduction: Embryonic Stem (ES) cells as pluripotent cells derived from the inner cell mass of blastula can differentiate to neural cells in vitro and this property is valuable in studies of neurogenesis and in the generation of donor cells for transplantation. In this regard, the propose of this research, was the study of the role of two important factors in the development of neural syst...

متن کامل

Generation of a mouse model for a conditional inactivation of Gtf2i allele.

The multifunctional transcription factor TFII-I encoded by the Gtf2i gene is expressed at the two-cell stage, inner cell mass, trophectoderm, and early gastrula stages of the mouse embryo. In embryonic stem cells, TFII-I colocalizes with bivalent domains and depletion of Gtf2i causes embryonic lethality, neural tube closure, and craniofacial defects. To gain insight into the function of TFII-I ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Human molecular genetics

دوره 9 4  شماره 

صفحات  -

تاریخ انتشار 2000